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Abstract. We begin this paper by identifying a class of stochastic mixed-integer programs that have col-
umn-oriented formulations suitable for solution by a branch-and-price algorithm (B&P). We then survey a
number of examples, and use a stochastic facility-location problem (SFLP) for a detailed demonstration of the
relevant modeling and solution techniques. Computational results with a scenario representation of uncertain
costs, demands and capacities show that B&P can be orders of magnitude faster than solving the standard
formulation by branch and bound. We also demonstrate how B&P can solve SFLP exactly – as exactly as
a deterministic mixed-integer program – when demands and other parameters can be represented as certain
types of independent, random variables, e.g., independent, normal random variables with integer means and
variances.
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1. Introduction

This paper describes a class of two-stage stochastic mixed-integer programs (SMIPs)
whose instances are amenable to column-oriented formulations, and then shows how to
solve such formulations with a branch-and-price algorithm (B&P). The phrase “branch
and price” was coined by Savelsbergh [49], but the technique was first proposed by John-
son [33] and implemented by Desrochers and Solomon [25] and Desrochers et al. [24].
Branch and price combines dynamic column generation – this is known widely through
the “cutting-stock problem” of Gilmore and Gomory [30] – with standard branch and
bound.

Stochastic programmers have only just begun to see that B&P applies to their prob-
lems, and we find only two papers on the topic: Damodaran and Wilhelm [21] and Lulli
and Sen [42]. (However, Shiina and Birge [51] and Singh et al. [53] use column-gen-
eration without branch and bound to solve SMIPs.) Those papers investigate specific
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applications of B&P to stochastic programming. In contrast, we describe a complete
class of problems to which B&P applies; in similarity, we show impressive computa-
tional results.

After defining the special class of SMIPs, we provide examples to show how sto-
chastic versions of several well-known deterministic models fit into this framework:
the elastic generalized-assignment problem (Brown and Graves [12]), crew-scheduling
(Vance et al. [56], Day and Ryan [23]), vehicle-routing problems (e.g., Desrosiers et al.
[26]), and the origin-destination integer multicommodity flow problem (Barnhart et al.
[6]). One additional problem, a stochastic facility-location problem (SFLP), guides our
detailed exploration of the B&P solution approach.

We initially model and solve a version of SFLP with uncertain demands, costs and
capacities, all represented through scenarios. Such representations appear frequently
in the stochastic-programming literature (e.g., Butler and Dyer [15], Chen et al. [18],
Ahmed and Sahinidis [1], Lulli and Sen [42]), with the primary advantage being to allow
arbitrary dependence among uncertain parameters. However, another common formu-
lation approach defines individual probability distributions for the stochastic program’s
parameters, which are typically assumed to be independent (e.g., Bertsimas [10], Zhou
and Liu [61]). We will show how B&P can solve SFLP in this situation, too. Further-
more, we will solve the problem exactly, that is, with the same certitude that prevails
in deterministic mixed-integer programs. This contrasts with alternative solution proce-
dures that provide only probabilistic or asymptotic guarantees of solution quality (e.g.,
Carøe and Tind [17], Sen and Higle [50], Ahmed and Sahinidis [1]).

Solution methods for SMIPs with “scenario uncertainty” typically employ Benders
decomposition (Benders [9]), or extensions thereof, to the original model. Examples
include the integer L-shaped decomposition from Laporte and Louveaux [36], and the
methods developed by Carøe and Tind [17] and by Sen and Higle [50]. Unfortunately,
all of these decompositions use a master problem whose linear-programming relaxation
is no stronger than the linear-programming relaxation of the original model (measured
over the master-problem variables which the two formulations have in common). Con-
sequently, these decompositions will suffer if the original model formulation has a poor
continuous relaxation. In contrast, B&P solves a column-oriented reformulation of a
model, also by a form of decomposition, but that reformulation will normally have a
tighter relaxation than the original model (Barnhart et al. [7]).

The next section describes our special class of SMIPs and shows how to convert
their standard formulations into column-oriented ones. Several models from the litera-
ture provide concrete examples. Section 3 presents the SFLP with scenario uncertainty,
describes how to solve instances with B&P, and provides computational results. Section
4 presents a version of SFLP in which random parameters take on continuous distribu-
tions, describes how to solve instances with B&P, and provides computational results.
Section 5 presents conclusions.

2. General Methodology

We will show that a variety of SMIPs of the following form can arise in scheduling,
routing and other applications:
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Formulation (SMIP0):

min
x

∑
i∈I

(
cixi + Eξ̃i

[
hi(xi , ξ̃i )

])
(1)

s.t.
∑
i∈I

Aixi = b (2)

xi ∈ Xi ∀i ∈ I (3)

where, for all i ∈ I ,

hi(xi , ξ̃i ) = min
yi

f̃iyi (4)

s.t. D̃iyi ≥ B̃ixi + d̃i (5)

yi ∈ Yi, (6)

and where ξ̃i ≡ vec(B̃i , D̃i , d̃i , f̃i ). The sets Xi require all xi to be bounded and integral.
The sets Yi will normally require non-negativity of the yi , but we place no particular
restrictions on these sets; the variables may be continuous and/or integer. The objective-
function term

∑
i∈I

Eξ̃i

[
hi(xi , ξ̃i )

]
is called the recourse function (Walkup and Wets [57]).

We further assume that the model exhibits relatively complete recourse (Rockafellar
and Wets [47]), which implies that, for any xi ∈ Xi , an optimal solution yi , satisfying
constraints (5) and (6), can always be found. We note that D̃i is an identity matrix in
some of our examples, implying the property of simple recourse (Beale [8], Wets [59]).
However, this is not an inherent requirement of this class of problems. The key feature
of SMIP0 is that the recourse function decomposes by “subproblem” i.

Because all xi are integral and bounded, the principles of Dantzig-Wolfe decompo-
sition apply (Dantzig and Wolfe [22]), as extended to integer programs by Appelgren
[4]. (See Wolsey [60], Section 11.2, for a comprehensive discussion.) To describe this
decomposition, let x̂k

i ∈ Xi, k ∈ Ki , denote the enumerated vectors satisfying con-
straints (3) for each i. Because of relatively complete recourse, Eξ̃i

[
hi(x̂k

i , ξ̃i )
]

is well

defined for all such x̂k
i . Then, because of the special structure, we can embed the decom-

posed recourse function into the column costs of a column-oriented formulation for
SMIP0:

Column-Oriented, Mixed-Integer, Two-Stage Stochastic Program (CSMIP0)

Indices:

i ∈ I subproblems
k ∈ Ki indices for (integer) vectors x̂k

i ∈ Xi
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Data:

x̂k
i the kth vector x̂k

i ∈ Xi

ci first-stage costs for subproblem i

Decision Variables:

λk
i 1 if x̂k

i ∈ Xi is selected as subproblem i’s solution in the overall solution, and 0
otherwise

Formulation (CSMIP0):

min
λ

∑
i∈I

∑
k∈Ki

(
ci x̂k

i + Eξ̃i
[h(x̂k

i , ξ̃i )]
)
λk

i (7)

s.t.
∑
i∈I

∑
k∈Ki

(
Ai x̂k

i

)
λk

i = b (8)

∑
k∈Ki

λk
i = 1 ∀ i ∈ I (9)

λk
i ∈ {0, 1} ∀ i, k (10)

Constraints (9) are often referred to as “convexity constraints.” CSMIP0 can be applied
when first-stage variables are general integers, but binary variables are typical so we
assume this restriction hereafter for simplicity.

Two examples of CSMIP0 to be discussed shortly simplify to the form of a set-par-
titioning model, so we describe this special case first. If constraints (8) are indexed by
j ∈ J, b is a vector of 1s, Ai is the identity matrix for all i, and all vectors x̂k

i are binary,
0–1, then CSMIP0 may be written as:

Formulation (CSMIP1):

min
λ

∑
i∈I

∑
k∈Ki

ĉk
i λ

k
i (11)

s.t.
∑
i∈I

∑
k∈Ki

x̂k
ij λ

k
i = 1 ∀j ∈ J (12)

∑
k∈Ki

λk
i = 1 ∀i ∈ I (13)

λk
i ∈ {0, 1} ∀i ∈ I, k ∈ Ki (14)

where x̂k
ij = (Ai x̂k

i )j and ĉk
i = ci x̂k

i + Eξ̃i
[h(x̂k

i , ξ̃i )].
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Naturally, the cardinalities of the index sets Ki in CSMIP0 or CSMIP1 may be
enormous, and it will usually be necessary to solve these models without explicitly
enumerating the x̂k

i . Before discussing such issues, however, we will provide concrete
examples of how this reformulation technique applies to some stochastic versions of
well-known, deterministic optimization problems. We supply only short descriptions of
the problems, and ask the reader to check the references for more details. For simplicity,
we hereafter drop the subscript on the expectation operator, because it should be clear
from context.

2.1. Elastic generalized-assignment problem
(Brown and Graves [12], Appleget and Wood [3])

The objective of the (deterministic) elastic generalized-assignment problem (EGAP) is
to minimize the cost of assigning capacity-consuming tasks j ∈ J to capacitated agents
i ∈ I, so that (a) each task is assigned to exactly one agent, and (b) the total capacity
assigned to agent i does not exceed the agent’s (potentially uncertain) capacity ũi , unless
an appropriate per-unit penalty fi is paid. If assigning task j to agent i consumes a random
amount of agent i’s capacity, denoted b̃ij , and if we denote the direct cost of such an
assignment as cij (which could represent an expected value), a stochastic version of the
EGAP (SEGAP) can be defined (Spoerl and Wood [54]):

SEGAP

min
x

∑
i∈I

⎛
⎝∑

j∈J

cij xij + E
[
hi

(
xi , (b̃i , ũi )

)]⎞⎠ (15)

s.t.
∑
i∈I

xij = 1 ∀j ∈ J (16)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (17)

where

hi

(
xi , (b̃i , ũi )

) = min
yi

fiyi (18)

s.t. yi ≥
∑
j∈J

b̃ij xij − ũi (19)

yi ≥ 0. (20)

Here, xij equals 1 if task j is assigned to agent i and is 0 otherwise, and yi represents
capacity violation for agent i. Therefore, E

[
hi

(
xi , (b̃i , ũi )

)]
represents the expected

capacity-violation penalty for agent i.
The conversion of SEGAP to a column-oriented formulation is straightforward. (Sa-

velsbergh [49] creates the analogous formulation for a deterministic, inelastic GAP.)
Each variable represents a potential joint assignment of tasks to a particular agent, i.e.,
a collection of tasks that an agent might be required to perform.
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Column-Oriented Formulation for SEGAP (CSEGAP)

Indices:

i ∈ I agents
j ∈ J tasks
k ∈ Ki joint assignments of tasks to agent i

Data:

x̂k
ij 1 if task j is assigned to agent i in the kth joint assignment for agent i, and 0

otherwise
x̂k
i

(
x̂k
ij1

, x̂k
ij2

, . . . , x̂k
ij|J |

)
, the kth joint-assignment vector for agent i

Xi the set of all possible joint assignments x̂k
i for agent i (the index set Ki can now

be defined as the minimal set such that ∪k∈Ki
x̂k
i = Xi)

ĉk
i expected cost of the kth joint assignment for agent i (ĉk

i =ci x̂k
i +E

[
hi

(
x̂k
i , (b̃i , ũi )

)]
for all i ∈ I and k ∈ Ki)

Decision Variables:

λk
i 1 if the kth joint assignment is selected for agent i, and 0 otherwise

Formulation (CSEGAP): Same as CSMIP1, Equations (11)–(14).

Constraints (12) guarantee that each task j is assigned to exactly one agent, and con-
straints (13) ensure each agent i receives exactly one joint assignment of tasks. Note that
this simple model allows any group of tasks to be assigned to any agent, so Xi consists
of all binary vectors of length |J |, implying that |Ki | = 2|J | for all i. This model can,
indeed, possess a large number of columns.

2.2. Routing and scheduling with time windows
(Desrosiers et al. [26], Ribeiro and Soumis [46])

The vehicle routing problem with time windows (VRPTW) is one important exemplar
from our special problem class. VRPTW describes a fleet of vehicles that must deliver
a set of customer orders, with each customer being represented by a node in a network.
Vehicles have limited capacities, and customers specify windows of time during which
deliveries should be made. The model allocates orders to vehicles so that vehicle capac-
ities are respected, and identifies a route for each vehicle that delivers each order during
that order’s customer-specified time window. The column-oriented formulation for this
problem fits the form of CSMIP1, Equations (11)–(14), with indices, parameters and
variables appropriately defined. The parameters x̂k

i , k ∈ Ki, now represent potential
routes and sets of deliveries to customers for vehicle i, each of which covers a subset of
the customer set J. A probabilistic recourse function could include expected penalties for
violating time windows and expected penalties for exceeding maximum route duration.
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2.3. Crew scheduling
(Vance et al. [56], Day and Ryan [23])

Following the description in [56], an airline crew-scheduler wishes to minimize the cost
of assigning flight crews to a fixed schedule of flights. Crew pairings define feasible trip
itineraries that can be assigned to some crew. Each pairing consists of a sequence of
flights that starts and ends at a home base, respects limits on work hours, allows times
for rest breaks, and satisfies numerous other requirements. Set-partitioning models are
the norm for this type of problem (e.g., [56], [23]), and these fit a simplified form of
CSMIP0 in which the set I is a singleton, b is a vector of 1s corresponding to flights that
must be covered by crews, and the convexity constraints (9) are eliminated. The binary
columns Ai x̂k

i represent pairings.
However, “home-base constraints” may need to be enforced (e.g., Butchers et al.

[14]) and these simply modify constraints (9) to∑
k∈Ki

λk
i � ui ∀i ∈ I, (21)

where I denotes the set of home bases, ui denotes the number of crews available at
i ∈ I , and the index sets Ki now represents potential pairings for crews based at i. For
the recourse function, we suggest a probabilistic variant on the function that Ehrgott
and Ryan [28] use to penalize schedules that do not allow adequate time for crews to
switch aircraft. Their function is based on averaged historical information, but could
be modified to represent a penalty function integrated over empirical or fitted delay
distributions.

2.4. Origin-destination integer multi-commodity flow problem
(Barnhart et al. [6])

The origin-destination integer multi-commodity flow problem restricts the standard, lin-
ear multi-commodity flow problem (Ahuja et al. [2], chapter 17) by requiring each of a
set of commodities to be shipped from its origin to its destination along a single path. This
problem’s formulation resembles the well-known path-oriented (i.e., column-oriented)
formulation of the linear multi-commodity flow problem (Ford and Fulkerson [29]), but
with binary variables. In particular, λk

i = 1 if commodity i follows path k ∈ Ki , and
λk

i = 0 otherwise. The main constraints of this problem require that the sum of all com-
modities flowing across each arc respect that arc’s capacity. Constraints (8), converted to
inequalities, handle these requirements if we (a) let bj represent the capacity of arc j, and
(b) define aij x̂

k
i to be the amount of arc j’s capacity consumed if commodity i is shipped

using path k. The convexity constraints (9) guarantee selection of a single path, with
appropriate origin and destination, for each commodity. For a communications network,
say, each component of the recourse function E

[
hi(xi , ξ̃i )

]
might represent an expected,

path-dependent penalty based on uncertain link availability (Girard and Sansó [31]) or
uncertain “hop delay” that is independent of congestion (Papagiannaki et al. [44]).

The following section investigates, in detail, one additional problem that fits the
framework of SMIP0, CSMIP0, and more specifically, CSMIP1.
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3. Solving a stochastic facility location problem by branch and price

3.1. A stochastic facility location problem with sole sourcing

A standard, deterministic, facility-location problem seeks the best locations at which to
open, i.e., build or lease, capacitated production facilities that will ship to established
customers to meet those customers‘ demands for some product. (We consider only the
simplest, single-product case here.) The mathematical model must find the best trade-
off between variable and fixed costs (Laporte et al. [36]): Opening more facilities leads
to lower shipping (variable) costs because plants are closer to customers, on average,
but opening more facilities incurs more facility-installation (fixed) costs. The determin-
istic model typically assumes that all customer demands will be completely satisfied,
and sometimes requires that each customer be served by a unique facility. This latter
requirement is known as sole-sourcing, and the resulting model is called the (deter-
ministic) capacitated facility-location problem with sole-sourcing (FLP) (Barcelo and
Casanova [5]).

Assume now that some uncertainty arises in the nominally deterministic FLP: Does
a manufacturer really know what future costs, demands and capacities will be? Let us,
initially, represent this uncertainty through a finite, discrete set of scenarios indexed by s,
with probability of occurrence equaling ps , and with cs , us , ds and fs representing cor-
responding shipping costs, facility capacities, customer demands and “excess-demand”
penalties, respectively. For simplicity, we assume that if the aggregate demand for a
facility exceeds its capacity to produce, the facility pays a penalty based on the excess.
Thus, the model that follows will be reasonable if, when a facility runs short of sup-
ply, it purchases extra product from an outside supplier and actually satisfies the excess
demand by shipping this product appropriately.

Stochastic Facility Location Problem with Sole-Sourcing (SFLP)

Indices:
i ∈ I potential facilities (at various locations)
j ∈ J customers
s ∈ S scenarios

Data [units]:

c′ fixed cost to open facility i [dollars]
ds
j customer j’s demand under scenario s [tons]

us
i facility i’s capacity under scenario s [tons]

f s
i penalty for each unit of excess demand at facility i under scenario s [dollars/ton]

ps probability that scenario s occurs
cs
ij per-unit shipping cost from i to j under scenario s [$/ton]

c̄ij expected cost to supply all of customer j’s demand from facility i, disregarding
any shortfalls in facility i’s capacity [dollars] (c̄ij = ∑

s∈S

pscs
ij d

s
j .)
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Decision Variables [units]:

x′ 1 if facility i is opened, and 0 otherwise
xij 1 if customer j is assigned to facility i, and 0 otherwise
ys
i amount of excess demand at facility i under scenario s [tons]

Formulation (SFLP):

min
x′,x,y

∑
i∈I

c′
ix

′
i +

∑
i∈I

∑
j∈J

c̄ij xij +
∑
s∈S

∑
i∈I

psf s
i ys

i (22)

s.t. − x′
i + xij ≤ 0 ∀i ∈ I, j ∈ J (23)∑
i∈I

xij = 1 ∀j ∈ J (24)

∑
j∈J

ds
j xij − ys

i ≤ us
i ∀i ∈ I, s ∈ S (25)

x′
i ∈ {0, 1} ∀i ∈ I (26)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (27)

ys
i ≥ 0 ∀i ∈ I, s ∈ S (28)

This type of formulation is known as the extensive form of a stochastic program
(Birge and Louveaux [11], p. 8), because the second-stage variables and constraints are
made explicit for all scenarios.

3.2. A column-oriented formulation for SFLP

Here we describe CSFLP, a column-oriented formulation for SFLP that fits directly into
the form of CSMIP1. In this formulation, a joint assignment represents any collection
of customers that are served by the same facility. We note that Teo and Shu [55] and Lo-
rena and Senne [38] have previously used column generation for solving deterministic
facility-location problems. Both of these papers use master problems that resemble our
set-partitioning master problem. The main differences lie in the subproblems: Theirs are
deterministic while ours is stochastic.

Column-Oriented Formulation of SFLP (CSFLP)

Indices:

k ∈ Ki possible joint assignments of customers to facility i
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Data [units]:

x̂k
ij 1 if customer j is assigned to facility i in the kth joint assignment for that facility,

and 0 otherwise
ĉk
i total expected cost of the kth joint assignment for facility i (ĉk

i = c′
i + ∑

j∈J

c̄ij x̂
k
ij

+∑
s

psf
s
i ŷs

i , except ĉk
i = 0 for the null assignment) [dollars]

Decision Variables:

λk
i 1 if the kth joint assignment of customers to facility i is selected, and 0 otherwise

Formulation (CSFLP): Same as CSMIP1, Equations (11)–(14).

A column-oriented formulation like CSFLP cannot be solved directly because it is
impossible, or impractical, to create the full set of columns. Therefore, each set Ki is
replaced by a subset to form a restricted master problem (RMP). The solution to the
LP relaxation of the RMP (LP-RMP) then yields dual variables, which can be used to
attempt to identify one or more new columns with favorable reduced costs through one
or more column-generation subproblems. In the case of CSFLP, if we seed the RMP
with all null joint assignments, the following subproblem arises for each facility i:

CSUBi (π̂ , µ̂i)

z∗
i = min

xi ,yi

∑
j∈J

(
c̄ij − π̂j

)
xij +

∑
s∈S

psf s
i ys

i + c′
i − µ̂i (29)

s.t.
∑
j∈J

ds
j xij − ys

i ≤ us
i ∀s ∈ S (30)

xij ∈ {0, 1} ∀j ∈ J (31)

ys
i ≥ 0 ∀s ∈ S, (32)

where π̂j is the optimal dual variable associated with constraint (12) for customer j in
LP-RMP, and µ̂i is the optimal dual variable from LP-RMP for the convexity constraint
(13) associated with facility i. If the per-unit shipping cost from facility i to customer j
is a random quantity, denoted c̃ij , note that c̄ij = E[c̃ij d̃j ], and c̄ij = E[c̃ij ]E[d̃j ] if
independence of c̃ij and d̃j prevails.

If the solution to CSUBi (π̂ , µ̂i) defines a non-null joint assignment of customers to
facility i, z∗

i gives the reduced cost of the joint assignment with respect to LP-RMP’s
current solution. A negative reduced cost indicates that x̂k

i should be translated into a col-
umn for the RMP, and inserted into it, and a non-negative reduced cost indicates that no
favorable column currently exists for facility i. (A positive reduced cost for subproblem
i can arise if Ki contains only the null schedule.)
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3.3. Solving the column-generation subproblems

The subproblems CSUBi (π̂ , µ̂i) are multi-dimensional knapsack problems (Weingart-
ner and Ness [58]) with elastic penalties in each dimension; Kleywegt et al. [34] refer
to these as static stochastic knapsack problems. We solve them through straightforward
branch and bound, except that we add “explicit constraint branching” (Appleget and
Wood [3]) by defining the general integer variables gi and adding the following con-
straint to each subproblem i:

∑
j∈J

xij − gi = 0. (33)

The variable gi is an “ECB variable” and receives a higher priority for branching than
does any xij . Intuitively, constraint branching provides a better balanced branch-and-
bound enumeration tree, and this tends to reduce enumeration (see Ryan and Foster
[48]).

3.4. Solving the LP-relaxation of the master problem

Branch-and-price algorithms (e.g., Savelsbergh [49], Barnhart et al. [7], Silva [52]) are
appearing as complements to the branch-and-cut algorithms that are commonly imple-
mented in commercial MIP solvers. B&P combines a branch-and-bound algorithm with
a column-generation procedure. Achieving good performance with column-generation
is difficult (Lübbecke and Desrosiers [41]), but a number of enhancements to the basic
procedure can help. “Duals stabilization” comprises the most important enhancement in
our experience, so we describe that here briefly. (See du Merle et al. [27] and Silva [52]
for more detail.)

Duals stabilization attempts to accelerate the column-generation process that solves
CSFLP’s LP relaxation. We follow du Merle et al. [27] for this purpose, and incorporate
an elastic dynamic trust region for dual variables. The trust region is always centered on
the most recent dual solution. It is elastic because penalized violation of the nominal trust
region is allowed, and it is dynamic because its width and penalties are adjusted contin-
ually. This trust-region mechanism is implemented by turning master-problem equality
constraints into elastic ranged constraints. The primal (master-problem) elastic penalties
define the dual trust region’s limits, while primal ranges define the dual penalties, i.e.,
the penalties applied if the dual variables fall outside the nominal trust region.

A trust region of some sort makes sense in this context because (a) the column-
generation mechanism, when viewed in the dual, is essentially Benders decomposition
(Benders [9]), and (b) the Benders master problem appears to benefit from the use of
trust regions (e.g., Brown et al. [13], Linderoth and Wright [37]). Of course, many
variants on trust regions could be applied to our problems, but this one is simple and
has proven effective in recent column-generation experiments (Silva [52], Singh et al.
[53]). (Actually, experiments in [53] suggest an even better method for “duals stabiliza-
tion,” one which we have not tested: Simply use interior-point duals as provided by an
interior-point solution of LP-RMP.)
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3.5. Computational results

We implement B&P using software from the COmputational INfrastructure for Opera-
tions Research (“COIN-OR,” or simply “COIN”), which provides a repository of distinct
libraries that can be integrated to build optimization algorithms (Lougee-Heimer [39]).
The COIN library labeled “BCP” provides the basic framework for a B&P algorithm
(Ralphs and Ladanyi [45]). This library’s design anticipates a parallel/distributed envi-
ronment, and, unfortunately, the protocol that emulates this environment in our serial
environment incurs some computational overhead. This overhead could be avoided with
some additional programming, so the total solution times reported here, denoted (TT),
exclude that overhead. However, we note that the true CPU times for our implementa-
tions never exceed TT by more than 10%, and the mean overhead for all problems is
only 3.1%.

We have implemented our B&P algorithm using COIN’s open solver interface (OSI),
coupled with CPLEX 8.0. The linear relaxation of the RMP and the subproblems are
submitted to CPLEX’s LP solver and MIP solver, respectively. We carry out these tests
on a networked workstation, a Dell Dimension 340 with a 2 GHz, Pentium IV processor
and 1 GB of RAM. For comparison, we also directly solve the extensive formulations
of SFLP using CPLEX 8.0, and report these solution times under “IP” in the Tables 1
and 2.

We note that the binary status of the variables xij in the extensive formulation would
force continuous versions of the variables x′

i to be binary in any optimal solution. Con-
sequently, we need not indicate to the solver that the x′

i are binary. However, we find that
solution times are shorter, on average, when we specify the x′

i to be binary and set the
branching priorities on these variables to be higher than those on the xij . Thus, we force
branching first on the important decisions, i.e., whether or not to open a plant, rather
than on the relatively less important, and more numerous, customer-to-plant assignment
decisions.

We investigate eight groups of problems. Each group is defined by problem size,
meaning “number of facilities-number of customers,” and these sizes are: 5–15, 5–
30, 8–24, 8–48, 10–30, 10–40, 10–50 and 10–60. For each problem size, we consider
instances with 1, 10 or 50 scenarios. (We consider larger problems with more scenarios
later.) Because run times vary somewhat between randomly generated instances of the
same size, we examine five different instances for each combination of problem size and
number of scenarios. All problems in this paper are solved to optimality.

To generate the test problems, we first create a reference problem – the superscript “R”
below stands for “reference” – according to the following rules: (a) Customer demands
dR
j are integers taken from a discrete uniform distribution U(5,25), (b) transportation

costs cR
ij are integers from U(15,25), (c) facility capacities are uR

i = 0.8
∑

j∈J dR
j /|I |,

and (d) the fixed costs are c′
i = ρuR

i for some cost-per-unit-capacity conversion con-
stant ρ, which is 1.5 for these examples. Chu and Beasley [19] use rules (a) and (b)
to generate certain instances of the generalized-assignment problem. For our stochastic
instances, demands ds

j are uniformly distributed integers within ±20% of dR
j , capaci-

ties us
i are ±10% of uR

i , and fixed costs are simply c′
i = c′R

i . Also, facility i pays an
additional f s

i = 0.4max
j∈J

cs
ij dollars for each unit of demand it must satisfy through an
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Table 1. Total time (TT) in CPU seconds, to solve randomly generated SFLPs with scenario uncertainty. Three
different algorithms solve five problem instances for each combination of size and number of scenarios. (Note:
All generated scenario data for the problem instance in row r, for r = 1, . . . , 10, have been reused in row r +
5. This accounts for apparent correlations in runtimes as exemplified by rows 5, 10 and 15.) A time given in
the bold font indicates the fastest among the three alternative solution methods

Number Problem Size (facilities-customers)
of
Scenarios

5–15 5–30 8–24 8–48
B&P B&P B&P B&P B&P B&P B&P B&P

IP w/o Stz w/ Stz IP w/o Stz w/ Stz IP w/o Stz w/ Stz IP w/o Stz w/ Stz
1 3.5 0.5 0.8 2.5 1.7 1.7 2274.9 1.1 14.5 5.8 5.0 2.7
1 0.1 0.3 0.8 1.5 4.1 3.9 * 2.0 2.7 3.8 3.4 2.4
1 3.2 0.6 2.0 0.9 1.4 1.9 274.1 1.6 1.8 4.5 6.4 2.7
1 0.2 0.3 0.6 1.6 2.1 1.9 299.8 1.3 4.4 3.8 3.2 2.6
1 3.6 0.5 1.4 8.6 2.4 2.8 1.8 0.8 0.9 5076.1 61.2 44.6

10 1.3 1.1 1.6 4.2 3.7 3.7 881.0 4.8 9.1 142.4 7.9 4.2
10 1.4 1.0 1.4 5.1 16.6 30.5 2987.5 4.3 7.0 39.7 6.7 5.7
10 1.0 0.9 1.1 1.2 2.8 3.0 231.3 4.8 5.7 20.6 8.4 5.2
10 0.4 0.6 1.3 2.4 3.2 3.6 16.4 2.7 2.9 19.8 6.7 5.9
10 1.0 0.7 1.4 9.4 3.6 6.8 3.9 1.2 1.3 * 29.7 25.8
50 2.5 2.3 3.0 4.9 10.1 10.2 1637.2 45.5 29.6 455.6 40.0 58.5
50 3.1 2.3 4.4 11.0 11.1 11.1 5579.0 8.7 7.6 45.7 20.2 14.0
50 2.8 2.3 2.7 3.4 7.8 8.5 1081.6 8.0 7.6 53.4 25.0 15.9
50 1.3 1.4 3.1 4.3 8.6 10.1 57.4 5.8 6.0 129.1 24.3 20.9
50 3.9 2.7 3.3 12.2 12.1 10.7 6.6 4.2 4.2 990.2 80.1 114.6

Legend:
IP: CPLEX MIP solver solving the extensive-form SFLP
B&P w/o Stz: Branch-and-price algorithm without duals stabilization solving CSFLP
B&P w Stz: Branch-and-price algorithm with duals stabilization solving CSFLP
* Problem not solved to optimality in 7,200 CPU seconds.

outside purchase. Clearly, these parameter settings are somewhat arbitrary, but testing
suggests that, over a wide range of settings, B&P remains a superior method for solving
these problems, compared to solving them directly. As evidence, the reader will see in
Tables 1 and 2 that B&P can even solve single-scenario problems faster than they can
be solved directly. That is, B&P can be faster even when parameter variances are 0. Fur-
thermore, experiments with |S| > 1 not reported here indicate that B&P’s superiority
only increases as parameter variances increase beyond the values used in this paper.

Tables 1 and 2 show TT for each problem instance solved (a) in its extensive form by
IP, (b) as CSFLP by basic B&P without duals stabilization, and (c) as CSFLP by B&P
with duals stabilization. Parameter settings with duals stabilization are fixed for all prob-
lems tested, and we set an arbitrary limit of 7,200 seconds on total allowed computation
time.

3.6. Discussion

Both Tables 1 and 2 provide stark evidence that branch and price can be vastly superior
to branch and bound for solving certain SMIPs, and even for certain deterministic MIPs
as indicated by the results for the single-scenario problems. One key to this superiority



14 E.F. Silva, R.K. Wood

Table 2. Total time (TT) in CPU seconds, to solve randomly generated SFLPs with scenario uncertainty. Three
different algorithms solve five problem instances for each combination of size and number of scenarios. This
table explores how computation times change as the ratio of facilities to customers decreases. A time given in
the bold font indicates the fastest among the three alternative solution methods

Number Problem Size (facilities-customers)
of
Scenarios

10–30 10–40 10–50 10–60
B&P B&P B&P B&P B&P B&P B&P B&P

IP w/o Stz w/ Stz IP w/o Stz w/ Stz IP w/o Stz w/ Stz IP w/o Stz w/ Stz
1 * 16.7 17.0 15.1 3.0 2.2 * 67.5 143.0 21.5 6.8 3.8
1 3.5 1.1 1.1 7.8 2.1 2.1 * 53.8 50.8 22.3 11.0 5.3
1 44.8 1.0 1.5 14.8 2.8 2.1 1657 9.7 7.2 14.8 8.3 4.4
1 1.4 1.3 1.5 * 36.2 10.2 * 116.8 99.1 13.5 11.9 5.2
1 * 5.3 19.5 6.2 3.2 1.7 50 5.5 4.1 23.8 13.4 4.3

10 * 10.3 12.9 2323.4 6.0 4.0 * 20.6 13.9 37.2 16.7 8.0
10 5.2 2.4 1.8 860.1 5.2 3.8 * 310.4 424.2 3163.1 30.2 22.4
10 7.0 3.3 2.6 262.6 5.6 4.1 * 18.0 14.1 140.5 23.1 14.5
10 5.0 2.0 2.1 * 53.6 77.2 * 19.7 11.7 45.6 14.2 10.8
10 * 15.0 29.4 613.5 5.1 11.2 * 20.5 41.2 30.7 19.7 9.6
50 * 16.2 15.6 3347.3 20.6 14.2 * 99.1 127.2 154.6 37.7 18.8
50 12.6 6.5 7.1 1894.9 14.5 11.6 * 37.9 22.9 * 60.0 50.7
50 51.7 7.7 10.7 573.8 14.8 11.3 * 112.3 171.7 132.3 47.9 39.9
50 16.6 6.7 6.0 * 30.8 27.3 * 33.9 27.9 97.1 34.4 21.5
50 * 26.0 115.0 3559.3 17.3 12.3 * 72.7 111.5 213.3 39.7 22.2
Legend: Same as Table 1

clearly lies in the tighter LP lower bound provided by the column-oriented formulation
versus the extensive formulation: see Tables 3 and 4.

One might be concerned that B&P requires so much overhead that it could not be
effective for small problems. However, the problems in Table 1 have only five or eight
potential facilities, and IP outperforms B&P only in problems with five facilities, and
then only by a small amount. Moreover, average solution times for B&P are at least an
order of magnitude faster than IP, and IP cannot even solve two of the problems within
the time limit of 7,200 CPU seconds. Even for small problems, B&P is a good choice.

Table 2, which covers problems with 10 facilities and 30 to 60 customers, clearly
shows that B&P solution times are more stable and suffer less than IP when the num-
ber of scenarios increases. Observe that (a) 23 problem instances out of 60 could not be
solved by IP within 7,200 CPU seconds, (b) IP never outperforms B&P, and (c) B&P can
be orders of magnitude faster than solving the original problem, even for single-scenario
instances, i.e., for deterministic problems.

Table 5 explores the computational limits of our current B&P implementation by
covering a wider range of problem sizes and number of samples than do Tables 1 and 2.
Camm et al. [16] solve a facility-location model for a commercial application with 17
potential facilities and 123 customer zones, so our largest problem is roughly the same
size as at least one real-world problem. We can see here (and to a degree in Tables 1 and
2) that solution times tend to increase only slowly, perhaps linearly, with the number
of scenarios. Thus, the number of scenarios does not seem to be a strongly limiting
factor with the B&P methodology. This bodes well for solving an SMIP through sam-
pled approximating problems, since the probability of identifying the optimal solution
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Table 3. Integrality gaps compared between the extensive formulation of SFLP (SFLP) and the column-ori-
ented formulation (CSFLP). These results correspond to the problems in Table 1

Number Problem Size (facilities-customers)
of
Scenarios

5–15 5–30 8–24 8–48

SFLP (%) CSFLP (%) SFLP (%) CSFLP (%) SFLP (%) CSFLP (%) SFLP (%) CSFLP (%)
1 18.64 0.00 18.15 0.00 25.29 0.00 22.18 0.00
1 28.48 0.00 22.33 0.00 27.25 0.05 23.26 0.00
1 48.20 0.00 26.65 0.00 27.00 0.00 24.67 0.00
1 16.78 0.04 18.43 0.00 34.65 0.00 22.65 0.00
1 22.16 0.00 19.26 0.00 22.27 0.00 22.49 0.05

10 19.21 0.03 17.11 0.00 25.93 0.07 23.28 0.00
10 34.97 0.00 23.14 0.04 26.21 0.02 21.50 0.00
10 37.36 0.00 24.38 0.00 28.52 0.00 23.79 0.03
10 18.62 0.00 17.77 0.00 31.37 0.00 23.29 0.00
10 20.09 0.00 19.47 0.00 20.93 0.00 21.13 0.00
50 19.37 0.00 17.05 0.00 24.75 0.07 23.66 0.01
50 37.02 0.00 23.15 0.00 25.90 0.00 21.39 0.00
50 36.55 0.00 24.15 0.00 28.68 0.00 24.03 0.02
50 18.87 0.00 17.86 0.00 30.04 0.00 23.73 0.00
50 20.33 0.00 19.22 0.00 21.05 0.00 20.57 0.02

for a discrete stochastic program increases exponentially with the number of sampled
scenarios (Kleywegt et al. [34]).

Table 5 also shows that problem size, in terms of facilities and customers, is a stron-
ger limiting factor in solving SFLP by B&P. We discuss potential reasons for this in the
following sections.

4. Solving a special case of SFLP exactly

Here we investigate a special case of the SFLP in which uncertain parameters are con-
tinuously distributed random variables satisfying certain independence requirements.
This model paradigm appears frequently in the literature (e.g., Louveaux and Peeters
[40], Laporte et al. [36]); however, such models are rarely solved exactly as we shall
solve SFLP. Even if the reader believes that some of our independence assumptions are
unreasonable in a real-world facility-location problem – we require independence of
demands, for instance, and this seems particularly unlikely in the SFLP – it is instructive
to see that exact solutions can be achieved for such a model in the column-oriented
framework. Perhaps the independence assumptions will be more appropriate in other
applications.

Consider a random vector ξ̃ = vec(c̃, d̃, f̃) whose elements represent shipping costs,
customer demands and excess-demand penalties, respectively; facility capacities u will
be deterministic initially. Using this definition of ξ̃ , and the following detailed defini-
tions, the column-oriented formulation for SFLP clearly fits the form of CSMIP1.

Data [units]

c′
i fixed cost for opening facility i [dollars]

c̃ij per-unit shipping cost from facility i to customer j [dollars/ton]
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Table 4. Integrality gaps compared between the compact formulation of SFLP (SFLP) and the column-oriented
formulation (CSFLP). These results correspond to the problems in Table 2

Number Problem Size (facilities-customers)
of
Scenarios

10–30 10–40 10–50 10–60

SFLP (%) CSFLP (%) SFLP (%) CSFLP (%) SFLP (%) CSFLP (%) SFLP (%) CSFLP (%)
1 22.35 0.04 32.07 0.00 40.43 0.07 20.72 0.00
1 23.00 0.00 26.59 0.00 41.53 0.06 32.15 0.00
1 21.04 0.00 26.16 0.00 56.96 0.02 25.89 0.00
1 23.92 0.00 26.59 0.00 52.95 0.10 23.19 0.00
1 38.46 0.08 27.41 0.00 45.97 0.00 22.71 0.00

10 22.69 0.02 32.30 0.00 37.85 0.02 21.04 0.00
10 22.28 0.00 27.02 0.00 38.12 0.12 35.53 0.01
10 20.32 0.00 25.77 0.03 55.77 0.00 27.42 0.02
10 21.80 0.00 27.55 0.05 48.76 0.04 23.96 0.00
10 42.51 0.09 27.05 0.00 46.41 0.03 21.74 0.00
50 22.66 0.00 33.43 0.00 38.46 0.03 20.21 0.00
50 21.65 0.00 27.64 0.00 36.00 0.00 35.39 0.00
50 20.73 0.00 25.55 0.00 55.82 0.09 26.89 0.00
50 21.82 0.00 28.18 0.00 47.38 0.00 24.36 0.00
50 42.30 0.06 28.03 0.00 44.95 0.06 22.23 0.00

d̃j demand from customer j [tons]
c̄ij expected cost to supply all of customer j’s demand from facility i, disregarding

any shortfalls in facility i’s capacity, i.e., c̄ij = E[c̃ij d̃j ] [dollars]
ui capacity of facility i [tons]
f̃i per-unit penalty for excess demand that must be covered by facility i [dollars/tons]
ĉk
i total expected cost of the kth joint assignment of customers to facility i [dollars]:

ĉk
i =

⎧⎪⎨
⎪⎩

0 if x̂k
i = 0

c′
i + c̄i x̂k

i + E[f̃i] E

[(∑
j∈J

d̃j x̂
k
ij − ui

)+]
otherwise

(34)

where h+ ≡ max{0, h}. Note that, up to this point, we only require independence of
excess-demand penalties and demands.

4.1. Normally distributed demands

For the special-case model, we assume that demands are independent and normally
distributed with means mj and variances vj , i.e., d̃j ∼ N(mj , vj ). For simplicity, we
also assume that all means and variances are integral. The reader will see that our
techniques easily extend to means αjmj and variances βjvj , where αj and βj are
positive scale parameters, and mj and vj represent integers running from 0 to some finite
upper bounds. Given the efficiency of the dynamic-programming solution procedure that
requires mj and vj , the scale parameters can be quite small. Thus, a wide range of actual
mean-and-variance combinations can be closely approximated.

The RMP for this model is identical to the column-oriented formulation, CSFLP,
presented in Section 3.2. To solve this special case exactly, we will exactly solve the
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Table 5. Total time (TT) in CPU seconds, for randomly generated SFLPs with scenario uncertainty. This table
explores the computational limits of our current B&P implementation with duals stabilization

Number Problem Size (facilities-customers)
of
Scenarios

10–60 20–60 15–80 20–100
50 36.4 64.6 47.2 137.2
50 35.2 55.7 65.1 257.2
50 26.9 58.1 54.6 108.2
50 35.9 62.1 44.0 106.0
50 26.7 53.4 106.6 154.9

100 48.2 136.8 132.7 229.6
100 68.4 96.5 108.0 829.6
100 56.2 109.4 238.3 165.7
100 73.0 123.9 75.6 150.0
100 51.0 90.4 76.3 257.0
200 134.6 245.3 181.5 513.0
200 131.3 199.4 302.2 1294.6
200 103.7 168.9 762.1 260.7
200 134.0 184.5 157.1 272.2
200 103.8 174.4 156.5 555.0
300 154.8 374.4 305.4 507.8
300 248.7 305.8 391.2 817.0
300 144.6 250.0 654.1 535.4
300 164.0 320.9 493.2 493.2
300 210.8 276.0 274.4 687.1

subproblems corresponding to the formulation (29)–(32). Given Equation (34), the sub-
problem associated with facility i is this “static stochastic knapsack problem” (Kleywegt
et al. [34]):

z∗
i = min

xij ∈{0,1} ∀j∈J

⎧⎨
⎩
∑
j∈J

(
c̄ij − πj

)
xij + E[f̃i]E

⎡
⎣
⎛
⎝∑

j∈J

d̃j xij − ui

⎞
⎠

+⎤
⎦
⎫⎬
⎭+ ci − µi.

.(35)

Evaluating E

[(∑
j∈J

d̃j xij − ui

)+]
is easy, because we know that

E
[
w̃(m, v)+

] = m�

(
m√
v

)
+

√
v

2π
exp

(
−m2

2v

)
, (36)

for any w̃(m, v) ∼ N(m, v), where �(•) denotes the cumulative distribution function
of a standard normal random variable (see [34]).

To derive a complete solution, we place an arbitrary ordering on the elements of
J, i.e., J = {1, . . . , j, . . . , |J |}, temporarily ignore constraint-violation penalties, and
apply dynamic programming to evaluate the functions gi(j, m, v) defined here:
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gi(j, m, v) = min
xi1,... ,xij

j∑
j ′=1

(c̄ij ′ − πj ′)xij ′ (37)

s.t.
j∑

j ′=1

mj ′xij ′ ≤ m (38)

j∑
j ′=1

vj ′xij ′ = v (39)

xij ′ ∈ {0, 1} forj ′ = 1, . . . , j, (40)

for m = 0, . . . , mmax, and v = 0, . . . , vmax, where mmax=
∑

j∈J mj and vmax =∑
j∈J vj . (In practice, much smaller limits on mmax and vmax can and should be used

for efficiency’s sake.) The dynamic program is defined by:

Initial Conditions:

gi(j, m, v) = 0 forj = 0, m = 0, v = 0, and

gi(j, m, v) = +∞ forj = 0, m �= 0, v �= 0.

Recursion:

gi(j, m, v) = min
{
gi(j − 1, m, v), c̄ij − πj + gi(j − 1, m − mj , v − vj )

}
(41)

for j = 1, . . . , |J |, m = 1, . . . , mmax, v = 1, . . . , vmax.

This recursion is similar to that for a two-dimensional knapsack problem, but for a given
m, the objective value gi does not depend on the variance index v. This will be used in
a final calculation, however.

Now, since the joint assignment x̂i yields an aggregate demand with distribution

N
(∑

j∈J mj x̂ij ,
∑

j∈J vj x̂ij

)
, the optimal objective value for (35) will be

z∗
i = min

m∈{1.... ,mmax},
ν∈{1.... ,νmax}

{
g (|J | , m, v) + E[f̃i] E

[
w̃(m − ui, v)+

]} + ci − µi. (42)

For the case in which facility capacities ũi are also independent and normally distrib-
uted, and independent from the customer demands, the method just described will work
after making a single modification: The expectation E

[
w̃(m − ui, v)+

]
in Equation (42)

changes to E
[
w̃(m − E[ũi], v + Var (ũi))

+].
4.2. Extensions

The methods described above will work for problems with different types of independent
random demand parameters, although numerical integration may be required. Suppose,

for instance, that each demand can be defined by d̃j = ∑Hj

h=1 r̃jh + mj where Hj is
a modest-sized integer parameter, all r̃jh are independent and identically distributed
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(iid) with mean 0 and variance v, and all mj are positive integers. Then, any aggregate
demand

∑
j∈J d̃j xij can be described through its integral mean m′ = ∑

j∈J mjxij , and
its scaled, integral variance v′ = v

∑
j∈J Hjxij . Thus, assuming deterministic facility

capacities ui , the recursion (41) applies with appropriate adjustments for the scaled vari-

ances, and E

[(∑
j∈J d̃j xij − ui

)+]
can be computed by numerical integration over

the distribution of
∑

j∈J d̃j xij . This will be straightforward because that distribution is
defined through the mean-shifted convolution of t = ∑

j∈J xij iid random variables,
which is completely defined by its bounded integral mean m′, its bounded, scaled, inte-
gral variance v′, and the common distribution for r̃jh.

4.3. Computational results for normally distributed demands

To build test instances here, we select each of the single-scenario problems from Section
3, assume costs and penalties are the deterministic quantities specified by that problem,
and assume that each demand in the problem represents the expected value of an inde-
pendent, normally distributed demand. The variance for each demand is then generated
as a discrete uniform random variable on [1, Vj ], where Vj is the maximum value that
assures P(d̃j < 0) ≤ 0.001 (e.g., Spoerl and Wood [54]). Table 6 displays solution
times and integrality gaps for all 40 problem instances. We use the software suite of
Section 3 for solving these problems, but the computer is an IBM G40, Pentium IV
laptop computer with 1 GB of RAM, running at 3 GHz.

4.4. Discussion

As in the Section 3, we see that duals stabilization is a useful enhancement to the B&P
algorithm.

With some exceptions, results displayed in Tables 1, 2, 5 and 6 indicate that B&P
performs better on problems with a smaller customers-to-facilities ratio. Similar results
have been observed when solving generalized-assignment problems, where the tasks-
to-agents ratio correlates positively with the number of feasible solutions the problem
instances have (Savelsbergh [49], Silva [52]). In turn, the number of feasible solutions
correlates positively with the number of columns in the column-oriented model, and
the more columns a problem has, the harder it must be to solve using B&P. The glaring
contradiction to this argument comes from the 10–60 column in Table 2, which indicates
that these problems are easier than the 10–50 problems. Theoretically, the 10–60 prob-
lems may have more columns than the 10–50 problems, but the effective number, i.e.,
the number of “cost-effective columns” may be smaller. Note that Table 4 shows that the
extensive 10–60 models have tighter LP relaxations than do their 10–50 counterparts,
which implies the system is more capacity-bound in some sense (which is just an artifact
of the problem generator). This may imply that the only cost-effective columns are those
that use most of a facility’s nominal capacity, which are relatively few in number.
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Table 6. Total solution time (TT, in CPU seconds) to solve CSFLP with B&P when demands are independent,
normal random variables. Each time in the bold font indicates the fastest solution time for the given problem.
(Pentium IV, 3 GHz computer with 1 GB of RAM.)

Problem Size B&P w/o Duals Stabilization B&P with Duals Stabilization Int. Gap (%)
Facilities Customers Soln. Time (TT, sec.) Cols. Nodes Soln. Time (TT, sec.) Cols. Nodes

5 15 0.8 188 1 0.4 194 13 0.00
1.0 153 1 0.5 181 1 0.00
0.5 171 1 0.4 143 1 0.00
0.6 192 1 0.7 205 1 0.00
0.7 168 1 0.6 191 1 0.00

5 30 11.3 443 1 9.7 404 1 0.00
9.3 474 1 7.3 437 1 0.00
9.3 432 1 8.8 438 1 0.01
9.7 423 1 8.4 416 1 0.00

18.8 599 9 17.5 695 7 0.04
8 24 1.2 350 1 1.1 337 1 0.00

1.1 322 1 0.9 310 1 0.00
3.0 466 9 1.7 326 3 0.05
1.2 351 1 0.8 296 1 0.00
1.8 385 1 1.6 363 1 0.00

8 48 9.1 1001 1 6.4 778 1 0.00
10.2 1006 1 7.0 765 1 0.01
11.2 1166 5 11.5 1237 9 0.02
10.4 989 3 7.3 816 9 0.01
11.5 959 3 7.9 734 3 0.00

10 30 3.3 512 5 2.9 455 7 0.01
2.8 501 1 2.3 452 1 0.02
2.7 524 1 2.0 451 1 0.00
3.3 526 1 2.4 461 1 0.01
2.5 497 3 5.7 856 3 0.03

10 40 6.5 823 1 5.0 708 3 0.00
9.3 860 1 6.5 679 1 0.00

13.9 793 3 11.5 668 3 0.02
14.0 893 13 19.8 1326 5 0.03
10.0 791 1 6.7 662 3 0.01

10 50 28.5 1076 1 20.7 862 3 0.03
37.5 1180 5 22.9 794 5 0.01
48.9 1624 17 65.3 2144 19 0.07
32.2 1303 5 34.1 1423 5 0.02
24.5 1105 1 17.9 837 1 0.00

10 60 73.4 1357 1 56.1 1221 1 0.00
76.1 1585 15 46.2 1263 5 0.01
71.7 1434 1 50.1 1213 1 0.00
90.7 1581 5 66.9 1243 5 0.00
74.0 1418 1 55.6 1215 1 0.00

5. Summary, conclusions and recommendations

5.1. Summary

This paper proposes a column-oriented model for a class of two-stage stochastic mixed-
integer programs (SMIPs), and describes examples of well-known deterministic optimi-
zation problems whose stochastic versions fall into this class. We show how to solve such
problems with a branch-and-price algorithm (B&P), using a stochastic facility-location
problem (SFLP) as a computational example. We solve one version with scenario uncer-
tainty as well as one with independent, normally distributed parameters. We solve both
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Table 7. Larger instances of SFLP. Total solution time (TT, in CPU seconds) to solve CSFLP with B&P using
duals stabilization, when demands are independent normal random variables.An asterisk indicates the problem
does not solve in 2,400 seconds. In this case, “Cols.” is the number of columns generated in 2,400 seconds.
(Pentium IV, 3 GHz computer with 1 GB of RAM.)

Problem Size (facilities-customers)

10–60 20–60 15–80 20–100 25–150 30–200
Soln. Time Soln. Time Soln. Time Soln. Time Soln. Time Soln. Time
(TT, sec.) Cols. (TT, sec.) Cols. (TT, sec.) Cols. (TT, sec.) Cols. (TT, sec.) Cols. (TT, sec.) Cols.
56.1 1221 9.4 1039 110.9 1947 180.2 2421 323.2 3753 1799.7 5859
46.2 1263 9.3 1068 80.5 1719 253.6 3144 451.5 4051 2386.7 6776
50.1 1213 72.9 4092 73.8 1683 117.8 2284 1014.4 5057 * (6644)
66.9 1243 11.6 1080 91.4 2023 153.0 2355 613.6 4025 * (6569)
55.6 1215 29.4 2525 65.6 1585 208.9 2631 1406.7 5358 2337.7 6359

versions exactly, and demonstrate how the algorithm’s performance can be improved by
“duals stabilization.” The open-source code libraries of the COmputational INfrastruc-
ture for Operations Research (COIN-OR) provide the framework for our B&P algorithm,
while CPLEX 8.0 comprises the solver engine.

5.2. Conclusions

This research demonstrates that B&P is an attractive and accessible method to solve
certain SMIPs. For SFLP with scenario uncertainty, B&P can be orders of magnitude
faster than solving the original problem by branch and bound, and this can be true even
for deterministic, i.e., single-scenario problems. Furthermore, the ability to solve exactly
an SMIP with continuously distributed parameters is highly unusual in the stochastic-
programming literature.

5.3. Recommendations for further work

The B&P approach can be used to solve, at least approximately, SMIPs of the class
described in Section 2, but with more general probability distributions. For instance,
the methods of “sample-average approximations” (Mak et al. [43], Kleywegt et al. [34])
provide probabilistic guarantees on solution quality and are based on repeated solutions
of sampled approximating problems. However, a sampled approximating problem is
essentially identical to a stochastic program with scenario uncertainty.

Sampled subproblems can be used to identify favorable columns in a “nearly exact
algorithm,” too. Suppose that once a subproblem’s integer variables are fixed, i.e., a col-
umn of the model has been defined, the expected cost of that column can be estimated
highly accurately through sampling. This certainly holds for SFLP, where the penal-
ties associated with, say, 10,000 sampled demands for some fixed customers-to-facility
assignment can be sampled and averaged in a fraction of a second. For all intents and
purposes then, that average will exactly equal the expected cost for the column, and
the linear-programming relaxation of a master problem containing such columns would
yield exact dual solutions. The only theoretical concern in this procedure is that the solu-
tion of a sampled subproblem might indicate that a column is favorable, but extended
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sampling would reveal that it is not. If we solve many sampled subproblems and cannot
identify an improving column, then we might become convinced that we have, in fact,
solved the LP-RMP. However, a formal procedure will need to be constructed to provide
a rigorous “level of conviction.”

Finally, we note that the COIN/BCP software is originally intended for use in a
distributed/parallel environment. It will be interesting to investigate how well our pro-
cedures perform in such an environment.
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31. Girard,A., Sansó, B.: Multicommodity flow models, failure propagation, and reliable loss network design.
IEEE/ACM Transactions on Networking 6, 82–93 (1998)

32. ILOG 2002. ILOG CPLEX 8.0 Reference Manual
33. Johnson, E.L.: Modeling and strong linear programs for mixed integer programming. S.W. Wallace (ed),

Algorithms and Model Formulations in Mathematical Programming, Springer-Verlag, 1–43 (1989)
34. Kleywegt A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for sto-

chastic discrete optimization. SIAM J. Optim. 12, 479–502 (2002)
35. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with complete

resource. Oper. Res. Lett. 13, 133–142 (1993)
36. Laporte, G., Louveaux, F.V., Van Hamme, L.: Exact solution to a location problem with stochastic de-

mands. Transp. Sci. 28, 95–103 (1994)
37. Linderoth, J., Wright, S.J.: Decomposition algorithms for stochastic programming on a computational

grid. Optimization Technical Report 02–07, Computer Sciences Department, University of Wisconsin-
Madison (2002)

38. Lorena, L.A.N., Senne, E.L.F.:A column generation approach to capacitated p-median problems. Comput.
Oper. Res. 31, 863–876 (2004)

39. Lougee-Heimer, R.: The Common optimization interface for operations research: Promoting open-source
software in the operations research community. IBM J. Res. Dev. 47, 57–66 (2003)

40. Louveaux, F.V., Peeters, D.: A dual-based procedure for a stochastic facility location. Oper. Res. 40,
564–573 (1992)
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